Can diffusion tensor imaging noninvasively detect IDH1 gene mutations in astrogliomas? A retrospective study of 112 cases.
نویسندگان
چکیده
BACKGROUND AND PURPOSE IDH1 mutational status probably plays an important role in the predictive response for patients with astroglioma. This study explores whether DTI metrics are able to noninvasively detect IDH1 status in astrogliomas. MATERIALS AND METHODS The DTI data of 112 patients with pathologically proven astroglioma (including 25, 12, and 10 cases with IDH1 mutation and 11, 11, and 43 cases without mutation in grades II, III, and IV, respectively) were retrospectively reviewed. The maximal fractional anisotropy, minimal ADC, ratio of maximal fractional anisotropy, and ratio of minimal ADC in the tumor body were measured. In the same World Health Organization grading, the imaging parameters of patients with and without IDH1 R132H mutation were compared by means of optimal metrics for detecting mutations. Receiver operating characteristic curve analysis was performed. RESULTS The maximal fractional anisotropy and ratio of maximal fractional anisotropy values had statistical significance between patients with IDH1 R132H mutation and those without mutation in astrogliomas of grades II and III. The areas under the curve for maximal fractional anisotropy and ratio of maximal fractional anisotropy were both 0.92 in grade II and 0.80 and 0.82 in grade III. The minimal ADC value and ratio of minimal ADC value also demonstrated statistical significance between patients with mutation and those without mutation in all astroglioma grades. The areas under the curve for minimal ADC were 0.94 (II), 0.76 (III), and 0.66 (IV), and the areas under the curve for ratio of minimal ADC were 0.93 (II), 0.83 (III), and 0.70 (IV). CONCLUSIONS Fractional anisotropy and ADC from DTI can noninvasively detect IDH1 R132H mutation in astrogliomas.
منابع مشابه
The Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery
Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...
متن کاملDifferentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging
Background: Presurigical planning for glioma tumor resection and radiotherapy treatment require proper delineation of tumoral and peritumoral areas of brain. Diffusion tensor imaging (DTI) is the most common mathematical model applied for diffusion weighted MRI data. Neurite orientation dispersion and density imaging (NODDI) is another mathematical model for DWI data modeling.Objective: We stud...
متن کاملEvaluation of White Matter Tracts in Autistic Individuals: A Review of Diffusion Tensor Imaging Studies
Introduction: Many cognitive and social deficits in autism are caused by abnormal functional connections between brain networks, which are manifested by impaired integrity of white matter tracts. White matter tracts are like the "highways" of the brain, which allow fast and efficient communication in different areas of the brain. The purpose of this article is to review the results of autism st...
متن کاملAnisotropic diffusion properties in infants with hydrocephalus: a diffusion tensor imaging study.
BACKGROUND AND PURPOSE Diffusion tensor imaging (DTI) can noninvasively detect in vivo white matter (WM) abnormalities on the basis of anisotropic diffusion properties. We analyzed DTI data retrospectively to quantify the abnormalities in different WM regions in children with hydrocephalus during early infancy. MATERIALS AND METHODS Seventeen infants diagnosed with hydrocephalus (age range, 0...
متن کاملFiber Tractography and Diffusion Tensor Imaging in Children with Agenesis and Dysgenesis of Corpus Callosum: A Clinico-Radiological Correlation
Background Corpus callosum is the largest commissure in human brain. It consists of tightly packed white matter tracts connecting the two cerebral hemispheres. In this study we aimed to evaluate role of fiber tractography (FT), and diffusion tensor imaging (DTI) in ped...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- AJNR. American journal of neuroradiology
دوره 35 5 شماره
صفحات -
تاریخ انتشار 2014